Red Electroluminescence from Light Emitting Diodes Based on Eu-Doped ZnO Embedded in p-GaN/Al2O3/n-ZnO Heterostructures

Author:

Tatebayashi JunORCID,Nishimura Kazuto,Ichikawa Shuhei,Yamada Shinya,Nakajima Yoshikata,Sato Kazuhisa,Hamaya Kohei,Fujiwara Yasufumi

Abstract

Heterojunction p-GaN/n-ZnO light emitting diode (LED) structure using Eu-doped ZnO (ZnO:Eu) as an active component is demonstrated in order to realize low-cost and environmentally-friendly red LEDs with sharp linewidth and temperature stability against surrounding environment including operating temperature and injection current. Chemically stable Al2O3 is inserted as an electron blocking layer between p-GaN and ZnO:Eu/n-ZnO in order to facilitate the injection of carriers into the ZnO:Eu active layer. Al2O3 insertion with a moderate thickness (∼10 nm) facilitates the carrier recombination at the ZnO layer with comparatively low resistivity. Device characteristics of the p-GaN/Al2O3/ZnO:Eu/n-ZnO LED structures show red luminescence under current injection with reversed bias voltage originated from Eu3+ ions in the ZnO host. Detailed optical characteristics of the ZnO:Eu layer in the LED structures utilizing the combined excitation emission spectroscopy measurement enable the identification of the luminescence centers contributing to Eu luminescence under both indirect excitation and collisional excitation. The luminescence center contributing to Eu luminescence under indirect excitation via the ZnO host is different from that under collisional excitation, which would pave the way to understand the Eu luminescence mechanism in ZnO:Eu, and hence realize high-brightness LED structures based on rare-Earth doped ZnO as an active component.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3