(Invited) Silicon Germanium FinFET Device Physics, Process Integration and Modeling Considerations

Author:

Lu Darsen,Morin Pierre,Sahu Bhagawan,Hook Terence B,Hashemi Pouya,Scholze Andreas,Kim Bomsoo,Kerber Pranita,Khakifirooz Ali,Oldiges Philip,Rim Ken,Doris Bruce

Abstract

We introduce SiGe FinFET device physics, process integration, and modeling considerations. Germanium is know to have a higher hole mobility than silicon. Enhancement of hole velocity due to lattice mismatch strain in SiGe epitaxy layers is significant. In addition, uniaxial stress is beneficial for device performance. Transformation of biaxial to uniaxial stress naturally occurs when SiGe film is etched into stripes. Furthermore, control of MOSFET threshold voltage by adjusting the SiGe-channel germanium content is possible. On the other hand, SiGe processing challenges include the elimination of interface trap states at the gate dielectric interface, fast diffusion of n-type dopants, and defects in stress relaxed buffer and critical thickness limitations. Band-to-band tunneling sets a lower bound to device static leakage current.

Publisher

The Electrochemical Society

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dielectric Confined Nickel-Titanium Germano-Silicide Junctions to SiGe Nanochannels;2023 IEEE Nanotechnology Materials and Devices Conference (NMDC);2023-10-22

2. A Simulation Study of SiGe Shell Channel CFET for Sub-2-nm Technology Nodes;IEEE Transactions on Electron Devices;2023-03

3. A comparative study on performance of junctionless Bulk SiGe and Si FinFET;Microelectronics Journal;2022-12

4. Performance Analysis of FinFETs with Strained-Si Fin on Strain-Relaxed Buffer;2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS);2020-07

5. Understanding the Mechanism of Electronic Defect Suppression Enabled by Nonidealities in Atomic Layer Deposition;Journal of the American Chemical Society;2019-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3