Abstract
Metal silicide films are likely to continue their function as electrical contact in CMOS devices beyond the 22-nm technology node. For such devices, the thickness of the silicide films is projected in the technology roadmap to be below 10 nm. Nickelbased silicides are among the most competitive choices for this application. For this family of silicides, the latest experimental investigations show that upon identical formation conditions (temperature and time), the phase, crystallinity, morphological stability, and thickness of resultant silicide films sensitively depend on the thickness and composition of initially deposited Ni1-xPtx layers. A proper understanding of these experimental observations is instrumental to design and control of ultrathin Ni1-xPtx silicide films with desired properties. In order to achieve low-resistivity electrical contact to Si, dopant segregation technique can be combined with SADS(silicide as diffusion source) processing to modify the Schottky barrier height between the silicide films and the underlying Si.
Publisher
The Electrochemical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献