Prediction Prognosis for State of Charge, State of Health, and Remaining Useful Life for a Lfp Battery Management System (BMS)

Author:

Morris Larry,Weatherspoon Mark H.

Abstract

Discovering the precise state of charge (SOC), state of health (SOH), and remaining useful life (RUL) while monitoring depth of discharge (DOD) for Lithium ion (Li-ion) batteries can be computational enormous. Electrical engineers using equivalent circuit models (ECM) or enhanced equivalent circuit models (EECM) have achieved an acceptable level of accuracy modelling the current, voltage, and temperature behaviors to get SOC, SOH, RUL, and DOD. ECM/EECM’s are computationally fast but do not fully account for the electrochemical material that makes up the battery in their mathematical equations or isothermal characteristics that continuously change during charging and discharging or at varying C-rates while cycling. Unfortunately, the number of factors and variables needed to compute the system of differential algebraic equations for the nonlinear physical-based models to achieve this level of precise data is computationally too expensive for real-time systems. In today’s environment, the use of filters has provided a bridge between empirical and physical based models. This paper examines an ECM and a porous electrode pseudo two-dimensional (P2D) model using particle filter (PF) technology for a series, parallel, and series/parallel combination battery switching microcontroller based battery management system (BMS). Introduction Reconfigurable battery packs have the advantage of altering the pack topology to adapt to changes in load requirements. The series/parallel battery configuration allows a low cost solution for networks under constraint to meet the energy and power demand placed on an electrical system without adding additional batteries and incurring additional cost. Part of the system is dependent on the fast charging parallel converter which allows the network to balance each cell and accurately estimate the battery SOC. Kim, Qiao, and Qu[1] series cell array negated parallel configurations in their series cell arrays. Physical based models have the advantage of performing comprehensive analysis on the effects of both the solid phase and the liquid phase. Modelling, porous electrode theory coupled with transport phenomena and electrochemical reactions represented by coupled nonlinear partial differential equations (PDE) in one or two dimensions gives physical based models an advantage over equivalent circuit model (ECM) based models. Santhanagopalan[2] and Rahimian[3] have used the single-particle model (SPM) implementing Kalman filtering methods to estimate SOC of Li-Ion cells. An area of concern is the computational complexity of the physical based models. Experimental Method State of Charge (SOC) The SOC, a measure of remaining capacity in the battery, helps to ensure during charging battery cells are not over/under charged and during discharge it is a quick gauge to show how much capacity is remaining capable of supporting the load. Eq-1 where, Q is the capacity. In battery cells, capacity can be represented as a voltage at specific time. Fig-1 State of Health (SOH) The SOH, an indication of where the battery is at in its life cycle, is used to measure capacitance of the used battery relative to the capacitance of a new battery. Using capacity fade analysis to demonstrate the loss of capacity during the life of the cell indicates if the battery is being maximized. This allowed us to monitor the remaining capacitance available in the battery cell at a given time. Eq-2 where, c is the capacity, α is the deterioration rate multiplier. α varies depending on power density, energy density, and temperature components. Fig-2 Remaining Useful Life (RUL) The RUL, an approximation of the cyclability of a battery pack, enables an estimation of the number of duration individual battery cells within the series/parallel battery scheme are useable, thus approximating the life cycle of the entire BMS. Eq-3 where, β is the cycle deterioration factor. Fig-3 References Kim, T., et al. “Series-Connected Self-Reconfigurable Multicell Battery.” 26th AAPEC&E, Mar. 2011, IEEE. pp. 1382-1387. Santhanagopalan, S., et al. "Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries." JPS 156.2 (2006): 620-628. Rahimian, S.K., et al. “State of Charge and Loss of Active Material Estimation of a Lithium Ion Cell under Low Earth Orbit Condition Using Kalman Filtering Approaches.” JES (2014): A860-A872. Figure 1

Publisher

The Electrochemical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimation of Remaining Useful Life in Lithium-Ion Batteries using Bidirectional Long-Short Term Memory;2023 International Conference on Technology, Engineering, and Computing Applications (ICTECA);2023-12-20

2. Comparison of Regression Methods for Estimation of State-of-Health in Lithium-Ion Batteries;2023 International Conference on Electrical and Information Technology (IEIT);2023-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3