Volume Deformation of Large-Format Lithium Ion Batteries under Different Degradation Paths

Author:

Li RuiheORCID,Ren DongshengORCID,Guo Dongxu,Xu ChengshanORCID,Fan Xingcun,Hou Zhichao,Lu Languang,Feng XuningORCID,Han Xuebin,Ouyang Minggao

Abstract

Lithium ion batteries experience volume deformation in service, leading to a large internal stress in modules and potential safety issues. Therefore, understanding the mechanism of volume deformation of a lithium ion battery is critical to ensuring the long-term safety of electric vehicles. In this work, the irreversible and reversible deformation of a large-format lithium ion battery under four degradation paths, including cycling at −5°C/1 C, 55°C/1 C and 25°C/4 C, and storage at 55°C/100% state of charge, are investigated using laser scanning. The reversible deformation decreases while the irreversible deformation increases as batteries age, following a linear trend with the state of health. The mechanism behind irreversible deformation is investigated using incremental capacity analysis and scanning electron microscopy. The irreversible deformation of the battery cycled at 25°C/4 C and stored at 55°C becomes extremely large below 80% state of health, mainly because of the additional deposit layers on the anode and increased gas production, respectively. Mechanical calculations show the huge stress in the aged modules. Proper spacers between batteries are suggested to reduce such damage. This study is valuable for understanding the mechanical safety of battery modules.

Funder

International Science &Technology Cooperation Program of China

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3