Dye-Sensitized Solar Cells Using Localized Surface Plasmon of Gold and Silver Nanoparticles with Comb-shaped Block Copolymer

Author:

Enomoto Mikio,Taniguchi Katsuhiko,Ihara Manabu

Abstract

The conversion efficiency of dye-sensitized solar cells using 2 μm thickness of TiO2 and N3 dye was improved from 1.5 to 2.4% by adding Ag nanoparticles covered with comb-shaped block copolymer (amine AgNP). Two methods of adding amine AgNP to porous TiO2 films were used. Absorption enhancement of the dyes on quartz substrates by adding AuNP was investigated. Absorption enhancement of the dyes occurred when adding the heat-treated amine AuNP, and the prepared AuNP covered with 16-mercapto hexadecanoic acid (thiol AuNP). Absorption enhancement was higher for Black Dye (BD) than for N3. The dependences of the absorption enhancement on the treating conditions could be explained by the distance between BD and AuNPs. The main absorption enhancement peak for thiol AuNP was longer side of wavelength than that for amine AuNP because thiol AuNP had a longer absorption wavelength of localized surface plasmon than amine AuNP had.

Publisher

The Electrochemical Society

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3