Separating the Faradaic and Non-Faradaic Charge Storage Mechanisms in Electrochemical Capacitors Using Step Potential Electrochemical Spectroscopy

Author:

Donne Scott W,Dupont Madeleine F

Abstract

Electrochemical capacitors are valuable energy storage devices due to their high capacitance and high specific power. Electrochemical capacitors have a unique performance characteristics due to their ability to charge and discharge much faster than batteries, but with longer discharge times than conventional capacitors.  However, these devices are currently limited by their low specific energy. In order to increase the potential applications of electrochemical capacitors, their performance needs to be optimised for their application. Electrochemical capacitor performance is largely influenced by the electrode material, as it determines both the nature and magnitude of the charge storage processes occurring within the electrode, such as double layer capacitance (non-faradaic) and redox reactions (faradaic; pseudo-capacitance). Understanding the mechanism by which an electrode material stores charge is fundamental to the improvement of electrochemical capacitors. However, conventional methods for evaluating performance, such as cyclic voltammetry and constant current charge-discharge, cannot differentiate the capacitance contributions from charge storage processes involved. This is particularly important in pseudo-capacitors, which have both faradaic and non-faradaic processes contributing to charge storage, and the separation of these processes is crucial to understanding their performance. In this work, step potential electrochemical spectroscopy (SPECS) has been applied to electrochemical capacitors as a performance analysis method to determine the charge storage contributions from different processes. The SPECS experiment involves applying a small (±25 mV) potential step to the working electrode followed by a long equilibration time (300 s). This process is repeated over and entire charge-discharge cycle. By scanning at such a slow rate, the electrode has time to equilibrate at each potential, and the maximum charge storage capabilities of the electrode can be accessed. Each of the different charge storage processes occurring at the electrode has a unique time-dependent current response, and hence each potential step profile can be fitted to a model describing each of these processes. From this, values for series resistance (RS), double layer capacitance (CDL), diffusion limited capacitance (CD) and residual capacitance (CR) can be extracted. When the potential is stepped over an entire capacitor cycling range, contributions from each process can be determined at each point in the cycle. SPECS has been used to examine the performance of a range of electrode-electrolyte conditions and has been successful in differentiating how the relative contributions to capacitance vary depending on the electrode material. The most commonly used electrode materials (activated carbon, manganese dioxide and ruthenium dioxide) have been examined. These materials were chosen because they each exhibit different charge storage mechanisms which can be differentiated by the SPECS method.

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nickel–cobalt oxide nanosheets asymmetric supercapacitor for energy storage applications;Journal of Materials Science: Materials in Electronics;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3