Electrochemical Splitting of LiF: A New Approach to Lithium-Ion Battery Materials

Author:

Dimov Nikolay,Kitajou Ayuko,Hori Hironobu,Kobayashi Eiji,Okada Shigeto

Abstract

Composites of LiF and lithium-free manganese compounds (MnF2 and MnOx) were prepared by high-energy ball milling and their electrochemical activities as cathode were investigated. Within the voltage range of 1.5 - 4.8 V, MnOx/LiF composites exhibited reversible reactivity with a sloping voltage profile, while MnF2/LiF composites showed no reactivity. Reversible Li+ extraction from the MnOx/LiF composites was observed in a full cell configuration with graphite anode, where total Li+ balance was monitored by chemical analysis of the anode and the cathode. Ex-situ X-ray diffraction and X-ray absorption fine structure (XAFS) experiments further confirmed that during the first charge LiF is split electrochemically and the Mn oxidation state changes accordingly, but the MnOx/LiF remained amorphous. Composites containing the redox oxide and the lithium compound as two separate solid phases could be used as a source of Li+ and it offers a new type of cathode materials for lithium-ion batteries.

Publisher

The Electrochemical Society

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3