Direct Visualization of Electrochemical Reactions in Porous Electrodes By Fluorescence Microscopy Using a Quinone-Based Flow Battery

Author:

Wong Andrew A.,Aziz Michael J.,Rubinstein Shmuel

Abstract

As flow batteries gain attention for potential deployment for grid-scale energy storage, a deeper understanding of micro-scale phenomena, particularly electrochemical reactions within porous electrodes, is becoming increasingly important to predict and improve performance. In the past few years, aqueous-soluble organic molecules such as quinones have been increasingly studied because of their potential to be abundant, inexpensive active electrolytes for flow batteries. Furthermore, redox-active quinones can also have distinct fluorescence signatures enabling direct, in situ reaction-flow mapping using fluorescence microscopy. In contrast to many other in situ techniques used to characterize flow batteries, fluorescence microscopy enables fast (<100 ms) high resolution imaging enabling detailed understanding of reactions and fluid flow within porous electrodes. In this study, we use fluorescence microscopy to bridge the micro-scale (<10 μm) and macro-scale (>2 cm) reaction-flow properties of flow batteries by mapping quinone reduction in flow past individual fibers and within bulk electrodes. To gain a deeper understanding of the reaction-advection-diffusion profile around individual fibers, spanning filaments are mounted perpendicular to the fluid flow using 3D-printed supports. The resulting quinones flow profile is imaged while passing a reducing current through the spanning fiber. This information is then correlated to bulk properties of porous electrodes. Bulk properties of porous electrodes are also evaluated by fluorescence microscopy while operating a quinone-based flow battery at various fluid flow rates and electronic current densities. The abstract image here shows a snapshot of how reaction distributions can vary at low fluid flow rates. The results suggest that microscopically-heterogeneous, macroscopically-homogeneous electrode materials such as porous carbon papers can lack the full utilization of their surface area, and provide an opportunity for exploring improved electrode architectures. The results of this work aim to illuminate possibilities for improving the performance of flow batteries for grid-scale energy storage. Figure 1

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3