Nitrogen-Coordinated Iron-Carbon and Nitrogen-Doped Carbon-Encapsulated Iron Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction

Author:

Galiote Nelson Alexandre,Lima Fabio H. B.

Abstract

The development of fuel cells is hampered by the sluggish oxygen reduction reaction (ORR), which is responsible for high overpotentials, even on Pt-based electrocatalysts. Therefore, it is mandatory the search for more active materials and, at the same time, composed by earth-abundant elements for attaining the widespread commercialization of the fuel cell systems. Non-noble metal electrocatalysts based on iron, nitrogen and carbon composites have gained considerable attention mainly due to recent discoveries of two different active structures: (i) nitrogen-coordinated iron-carbon materials (represented here by Fe-N-C), in which the active center contains the nitrogen-iron coordination and; (ii) nitrogen-doped carbon-encapsulated iron nanoparticles (Fe@N-C), in which the electrocatalyst is formed by iron nanoparticles protected by a graphitic shell of carbon layers, doped with nitrogen atoms [1,2]. In the present study, non-noble metal electrocatalysts composed by iron, nitrogen and carbon were synthesized by the pyrolysis of a mixture of Vulcan carbon, iron chloride and a nitrogen precursor in N2 atmosphere. The results showed that when the pyrolysis was conducted at 700 oC, the use of imidazole as the nitrogen precursor resulted in the formation of the encapsulated nanoparticle structure, as revealed by the presence of a peak at ca. 2.1 Å (metallic Fe nanoparticles) in the Fourier Transform (FT) of the EXAFS oscillations. On the other hand, when phenanthroline was used as the nitrogen precursor, a FT peak centered by ca. 1.5 Å was obtained, evidencing the formation of the nitrogen-iron coordinated structure. When the pyrolysis was conducted at 1050 oC, the resulting structure was the same for the case of imidazole, but a mixture of Fe@N-C and Fe-N-C was obtained for phenanthroline. The ORR polarization curves for the materials prepared at 700 oC showed much higher activity for the Fe-N-C structure, but with similar and low stability for both materials. The pyrolysis at 1050 oC also showed higher activity for the material prepared with phenanthroline, but the stability was considerably improved, with similar behavior for both electrocatalysts. An additional pyrolysis step at 950 oC in NH3 atmosphere resulted in an increased ORR activity and stability for both electrocatalysts, but still with much higher activity for the Fe-N-C-containing material. Interestingly, the EXAFS results showed that the prolonged NH3 treatment of the Fe@N-C structure conducted to the appearance of the FT peak at 1.5 Å (nitrogen-iron coordination), and the ORR polarization curves indicated further increase on its original activity and stability. These results evidenced that the increase in the overall nitrogen content of the electrocatalyst by using a efficient iron chelating agent (phenanthroline), or via NHtreatment, improved the ORR activity due to the increase in the iron-nitrogen interaction for both Fe-N-C and Fe@N-C initial structures. (Further enhancement in the ORR activity may come from the increase in the nitrogen doping level of the graphitic matrix). The increase in the nitrogen content for both Fe-N-C and Fe@N-C structures may promote a more embraced carbon matrix and, so, it may avoid the demetallation phenomenon, increasing the stability during the ORR. [1] U.Tylus, Q. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov, S. Mukerjee, J. Phys. Chem. C 2014, 118, 89999008. [2] K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M-T. Sougrati, F. Jaouen, S. Mukerjee, Nat. Commun. 6:7343 (2015) 1-7. Acknowledgements The authors gratefully acknowledge financial support from FAPESP (2013/16930-7, and 2016/13323-0) and CNPq. 

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3