(Invited) Fast and Slow Light-Emitting Silicon-Germanium Nanostructures

Author:

Lockwood David J.,Wu Xiaohua,Baribeau Jean-Marc,Mala Selina A.,Modi Nikhil,Tsybeskov Leonid

Abstract

Epitaxially-grown three-dimensional Si/SiGe nanostructures (NSs) produce photoluminescence (PL) and electroluminescence in the desired spectral range of 1.3-1.6 μm. We show that by controlling and modifying such Ge-rich SiGe nanoclusters during growth it is possible to fabricate very fast (PL lifetime <20 ns) and hence more efficient SiGe light-emitting devices. The results presented here demonstrate that in such Si/SiGe 3D NSs with a nominal Ge concentration approaching ~35% the PL peaked near 0.78 eV strongly depends on the Si/SiGe heterointerface abruptness. In other Si/SiGe NS/quantum-well samples with a Ge concentration approaching ~40%, we find two PL bands peaked at ~0.8 eV and ~0.9 eV at low temperatures. The PL peaked at 0.8 eV rises and decays slowly, and it quickly saturates as the excitation intensity increases. In contrast, the PL peaked at 0.9 eV shows a much shorter lifetime and exhibits a linear dependence versus excitation intensity. The slow/delayed PL at 0.8 eV is attributed to carrier recombination at the SiGe NS/Si transition layer while the faster and more efficient PL at 0.9 eV is associated with SiGe quantum wells. More complicated and similarly fast (~10-7 s) decays are observed at very high excitation intensities due to electron-hole droplet formation. The physics of carrier recombination in these Si/SiGe NSs is discussed.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3