Author:
In Choi Dong,Han Gi-Beom,Jin Lee Dong,Park Jung-Ki,Wook Choi Jang
Abstract
We report a simple and scalable synthetic method where we use cotton as a template material to grow LiCoO2 nanoparticles along one dimensional micro-fibers with minimized agglomeration. The final three dimensional porous electrode structure and smaller dimensions of nanoparticles result in efficient ionic accessibility as well as decreased ionic/electronic diffusion lengths during battery cycling. Due to this structural advantage, the nanoparticle fiber structure exhibits substantially improved power performance compared to that of the commercial micron-size counterpart. Even at a fast 2 min discharging rate, a capacity of 90 mAh/g is preserved. Excellent cycling performance is also achieved by maintaining the original electrode structure. The synthetic procedures introduced herein are simple and scalable and thus must be readily applicable to the large-scale syntheses of other lithium battery active materials.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献