Electrochemical Behavior of Direct Methanol Fuel Cells Based on Acidic Silica - Sulfonated Polysulfone Composite Membranes

Author:

Baglio Vincenzo,Lufrano Francesco,Di Blasi Orazio,Staiti Pietro,Antonucci Vincenzo,Aricò Antonino S.

Abstract

This paper reports on the research and development of polymer electrolyte membranes based on sulfonated polysulfone and acidic silica materials for application in DMFCs at different operating temperatures. The sulfonated polysulfone (SPSf) was synthesized using trimethyl silyl chlorosulfonate as the sulfonating agent, whereas silica was modified by treatment with chlorosulfonic acid at room temperature. The composite membranes based on sulfonated polysulfone and acidic silica were prepared by using a casting method from dimethylacetamide solutions. The membranes were characterized in terms of ion exchange capacity, methanol/water uptake, proton conductivity and DMFC performance. The membrane containing 10 wt.% of acidic silica showed a promising performance in DMFC investigations at temperatures comprised between 30°C and 60°C. A maximum power density of 60 mW cm-2 was obtained at 60°C feeding 1M methanol solution at the anode and dry air at the cathode, both at atmospheric pressure.

Publisher

The Electrochemical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3