Interfacial Transitional Layer in SiO2 Film Thermally Grown on SiC(000-1)

Author:

Nagai Ryu,Iitsuka Nozomu,Ozawa Kodai,Hasunuma Ryu,Yamabe Kikuo

Abstract

The uniformity of SiO2 film thermally grown on 4H-SiC was characterized by atomic force microscopic observation of the emerged SiO2 surface after each step-etching using diluted HF solution. It was found that roughness of the emerged SiO2 surface drastically increases near the SiO2/SiC interface. This means that the film quality near the interface is not two-dimensionally uniform. We described the two-dimensionally non-uniform. On the other hand, the amount of roughness increase at the middle region was small, indicating the middle region is uniform film. These results indicate that the region is two-dimensionally uniform. These results indicate that the oxide film contains non-uniformly when just after being formed, and then the two-dimensional film uniformity is gradually improved during subsequent oxidation. Density profiles of SiO2 films were also characterized. The uniformity improvement was discussed in terms of impurity desorption and film density.

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3