Rapidly Direct Laser 3D Printing of High-Performance Protonic Ceramic Fuel Cells

Author:

Tong JianhuaORCID

Abstract

Fuel cells with a dense ionic conducting electrolyte layer sandwiched between two porous electrode layers are one of the most efficient fuel-to-electricity energy conversion devices. Their reversible operation can also efficiently electrolyze water to hydrogen, reduce carbon dioxide to fuels, synthesize ammonia, upgrade fuels, and store energy on large scales. Compared with the popular low-temperature (~80 oC) proton exchange/polymer electrolyte membrane fuel cells and the high-temperature (700-1000 oC) oxygen ion-conducting solid oxide fuel cells (SOFCs), initially used in electric vehicles, auxiliary powers, power plants, and hydrogen electrolyzers, the rising star of protonic ceramic fuel cells (PCFCs) based on proton conducting oxide electrolytes offers excellent suitability for operating at 400-700 oC, the optimum temperature range for electrochemical energy devices, enabling extensive superiorities (high efficiency and performance, long thermal and chemical stabilities, flexible fuels, and cost-effective compatible materials) compared to their counterparts. In recent ten years, many high-performance PCFCs have been reported. However, most performances were achieved using small-area button cells (<0.5cm2) fabricated using spin coating, drop coating, manual brushing, and screen printing of electrolytes on the dry-pressed anode supports, followed by co-firing. There are challenges to transferring the excellent microstructures and materials chemistries/properties obtained from small-area cells to large-area cells and stacks. Furthermore, the decrease in cell component layer thickness for high volumetric cell performance and the requirement for more efficient, faster, and more cost-effective manufacturing motivated the advanced manufacturing of PCFCs. This work will focus on the direct laser 3D printing (DL3DP) of PCFCs performed at Clemson University. The DL3DP integrated 3D printing (microextrusion and ultrasonic spraying) and laser processing (drying, sintering, and machining), allowing for manufacturing PCFC components, single cells, and stacks with the desired microstructures and geometries irrelevant to the area. The DL3DP could rapidly and cost-effectively manufacture PCFCs without conventional long-term furnace processing. The processing speed could be 2 orders of magnitude faster than the conventional tape-casting and furnace co-firing method. The achieved cells and stacks showed excellent fuel cell performance and less dependence on the effective area. The cells showed peak power densities 1.6-2.6 times that of the conventionally processed samples. The stacks demonstrated a peak power of 7 W and constant power outputs of 0.5-3.1 W for 110-260 hours. This DL3DP can be expanded to manufacturing other heterogeneous ceramics for energy conversion and storage devices. Figure 1

Publisher

The Electrochemical Society

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3