Relationship between Cation Segregation and the Electrochemical Oxygen Reduction Kinetics of La0.6Sr0.4CoO3−δ Thin Film Electrodes

Author:

Kubicek Markus,Limbeck Andreas,Frömling Till,Hutter Herbert,Fleig Jürgen

Abstract

Pulsed laser deposited La0.6Sr0.4CoO3−δ (LSC) thin film electrodes on yttria stabilized zirconia (YSZ) single crystals were investigated by impedance spectroscopy, time of flight secondary ion mass spectrometry (ToF-SIMS) and inductively coupled plasma optical emission spectrometry (ICP-OES). Effects caused by different film deposition temperatures, thermal annealing and chemical etching were studied. Correlations between changes in electrode polarization resistance of oxygen reduction and surface composition were found. At high deposition temperatures and after thermal annealing an inhomogeneous cation distribution was detected in the surface-near region, most manifest in a significant Sr enrichment at the surface. An activating effect of chemical etching of LSC is described, which can lower the polarization resistance by orders of magnitude. Chemistry behind this activation and thermal degradation was analyzed by ToF-SIMS and ICP-OES measurements of in-situ etched LSC films. The latter allow quantitative depth resolved compositional analysis with nominally sub nm resolution. High resolution scanning electron microscopy images illustrate the accompanying changes in surface morphology. All measurements suggest that stoichiometric LSC surfaces intrinsically exhibit very high activity towards oxygen reduction.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3