Comparison of Feature Extraction Technique for Segmentation in Human Iris Recognition Under Uncontrolled Environment Using CNN Algorithm with SVM Classifier

Author:

B Karthik,G Ramkumar

Abstract

The main aim of this study is to compare the radical segmentation of human iris using two different machine learning algorithms in an uncontrolled environment image dataset. Materials and method: Images taken from MMU iris dataset, Convolutional Neural Network (CNN) model, and Support Vector Machine (SVM) model implemented to segment iris in uncontrolled environment image with 50 samples per group. Results: MATLAB simulation result shows that CNN has accuracy of 94% and SVM has 72% in segmenting iris. Attained significant accuracy (0.001) in SPSS statistical analysis. Conclusion: For the given images, proposed CNN shows better accuracy than SVM classifier in iris segmentation tasks.

Publisher

The Electrochemical Society

Subject

General Medicine

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance evaluation of efficient segmentation and classification based iris recognition using sheaf attention network;Journal of Visual Communication and Image Representation;2024-08

2. INCL: A Robust Design of Artificial Intelligence Assisted Learning based Cardiovascular Disease Detection using Improved Neural Classification Logic;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

3. Ensuring Access Control Reliability and Security of Lightweight Blockchain-Based IOT Cloud-Based Electronic Medical Records Sharing;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

4. Experimental Evaluation in Identification of Kidney Cancer using Modified Learning Scheme;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

5. Empowering Patient Care: A Novel Patient Drug Recommendation System Using Artificial Intelligence with Modified Learning Strategy;2024 International Conference on Computing and Data Science (ICCDS);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3