Participation of Oxygen in Charge/Discharge Reactions in Li1.2Mn0.4Fe0.4O2: Evidence of Removal/Reinsertion of Oxide Ions

Author:

Kikkawa Jun,Akita Tomoki,Tabuchi Mitsuharu,Tatsumi Kuniaki,Kohyama Masanori

Abstract

We have investigated the charge-discharge mechanism in the first cycle and the origin of its high charge–discharge capacity for Li1.2Mn0.4Fe0.4O2 (0.5Li2MnO3·0.5LiFeO2) positive electrode material of lithium ion batteries. Results reveal that oxygen loss occurs in the entire region of the Li1.2Mn0.4Fe0.4O2 particles composed of Mn-rich (Fe-substituted Li2MnO3) and Fe-rich (Mn-substituted LiFeO2) nanodomains during the first charge. Nanodomains of Mn-Li ferrites with a spinel structure start to be formed along the particle surfaces. During the first discharge, the extracted oxygen is partially reinserted preferentially into the Fe-rich nanodomains as oxide ions rather than in the Mn-rich nanodomains, and the proportion of the spinel nanodomains decreases. The origin of the high charge–discharge capacity might be ascribed to the participation of the oxide ions and neutral oxygen species in charge compensation by incorporation of the LiFeO2 component into Li2MnO3. Irreversible capacity at the first cycle can be caused by the irreversible loss of oxygen during the charge and irreversible structural changes throughout the cycle: the movements of transition metal ions inducing random cation-site occupation throughout the cycle, associated with the formation and incomplete disappearance of the spinel ferrite nanodomains which is almost electrochemically-inactive under the applied voltage range.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3