Synthesis and Characterization of Calcium Copper Titanate (CaCu3Ti4O12) Powder as a Brown-Coloured Inorganic Pigment with High Infra-Red Reflectance

Author:

Rohilla VishalORCID,Kumar Mukesh,Panwar N. S.,Kumar Dinesh,Gupta Rahul

Abstract

To mitigate the Urban Heat Island (UHI) effect there is a stringent need to develop non-toxic and low cost Infra-red (IR) reflective pigments. Therefore, in present work the Calcium Copper Titanate (CaCu3Ti4O12) abbreviated as CCTO was prepared at different temperatures 800 °C, 850 °C, 875 °C, 900 °C, 925 °C, and 950 °C. X-ray diffraction (XRD), diffuse reflectance measurement in the Ultra Violet (UV), Visible (Vis) (295 nm to 700 nm), and Near Infra-Red (NIR) region (700 nm to 2500 nm), optical band gap and colour were measured to establish its use as IR reflective pigment. The chemical stability and cooling performance were also investigated. The XRD investigations showed the single-phase CCTO with cubic symmetry can be obtained by the calcination of reactants at an optimum temperature of 925 °C. The Diffuse reflectance data, within the heat-producing NIR band (700 nm to 1100 nm) varied from 46.23% to 53.34%. The optical band gap was observed to vary from 3.30 eV to 2.03 eV. No significant color degradation was observed upon treatment with 10% H2SO4 and 10% HNO3. Cooling performance assessment showed a significant difference of ∼5 °C between coated and uncoated red brick surfaces.

Publisher

The Electrochemical Society

Reference41 articles.

1. Impact of urbanization and land-use change on climate;Kalnay;Nature,2003

2. Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia;Coutts;Journal of Applied Meteorology and Climatology,2007

3. Mitigation of urban heat islands: materials, utility programs, updates;Rosenfeld;Energy Build.,1995

4. Feasibility study on the implementation of adaptation and mitigation strategies in coping with urban heat islands (case study: Tehran metropolis);Borhani;Human Geography Research,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3