Electrochemical Sensing of Phenylbutazone using Multi-Walled Carbon Nanotube Paste Electrode in Pharmaceutical and Biological Fluids

Author:

Patil Yuvarajgouda,Megalamani Manjunath,Abbar Jyothi,Nandibewoor SharanappaORCID

Abstract

The electrochemical performance of phenylbutazone (PBZ) was studied using a multi-walled carbon-nanotube-modified paste electrode (MWCNT/CPE) using a variety of voltammetric tools like cyclic voltammetry (CV), linear sweep voltammetry (LSV), and square wave voltammetry (SWV). The results showed that the MWCNT/CPE exhibited remarkable electro-catalytic action towards the electrochemical oxidation of PBZ in a phosphate buffer solution of physiological pH 7 compared to a bare carbon paste electrode. The electro-kinetic parameters like heterogeneous rate constant, transfer coefficient, scan rate, pH, and involvement of electrons in electro-oxidation of PBZ was investigated. For bare CPE, the peak current was noted to be 19.53 μA with peak potential of 0.6871 V. For MWCNT/CPE, the peak current was 30.53 μA with peak potential of 0.6792 V. The anodic peak was analyzed, and the process was diffusion controlled. For the estimation of PBZ, a SWV technique was developed with great precision and accuracy, with a detection limit of 5.2 nM and a limit of quantification of 17 nM, in the concentration range 1 × 10−7 to 10 × 10−6 M. The MWCNT/CPE has been used successfully for PBZ detection in injection, blood, and urine samples, with recovery rates of 98.9% to 101.5%, 96.3% to101.7% and 98.3% to 102.8%, respectively.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3