Factors Governing the Failure of Subsea Critical Connector Bolts

Author:

Medlinsky OferORCID,Eliezer Amir,Hadjistassou Constantinos

Abstract

Impressed current cathodic protection (ICCP) systems are commonly used to shield offshore drilling rigs, pipelines, and subsea equipment in the oil and gas industry. In underwater service conditions, water temperature, salinity and velocity play a major role in the longevity of subsea applications. Interactions between the preceding factors can induce catastrophic failure to critical systems while the underlying cause is unclear. This paper proposes an approach for elucidating the corrosion process accompanying underwater applications. The service conditions of underwater application are simulated in a multidisciplinary system that records various parameters such as water temperature, reference-electrode potential, and electric current at five-minute intervals during the 21 d of the experiment. This novel, experimental, and inexpensive ICCP system was developed on an “Arduino” microcontroller and applied to an actual ASTM A193 B7 bolt tightened on an ASTM A105 flange at different torque levels. Experimental results indicate a direct relationship between the water day-night temperature profile and the cathodic protection performance. Specifically, the ICCP performance declines with increasing temperature. When the ICCP system was activated, gas bubbles are generated on the metal surface. Presumably these bubbles could induce hydrogen embrittlement cracks which were observed in scanning electron microscope images of the bolt cross-sections.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3