Electrochemical-Thermal Modeling of Large-Format, Thin-Film, Lithium-Ion Batteries with Cocurrent and Countercurrent Tab Connections Using a Reduced-Order Model

Author:

Verbrugge Mark W.ORCID,Baker Daniel R.ORCID

Abstract

We derive and implement a new reduced-order model for the simulation of large-format, thin-film batteries with cocurrent and countercurrent tab connections. We employ the multi-site, multi-reaction (MSMR) framework to describe the solid phase thermodynamics as well as irreversible phenomena associated with diffusion and electrochemical reactions for a graphite negative and a spinel manganese oxide positive. The calculations are streamlined by using the reduced-order electrochemical model for a porous electrode derived by means of a perturbation analysis, which we term ROM1. For discharge rates less than 1 C, where the 1 C rate corresponds to the current needed to fully discharge the cell in 1 h, ROM1 yields accurate results for traction-battery electrodes. We employ ROM1 in the cell energy balance, with the overall results allowing one to clarify the current and temperature distributions within the cell during discharge and isolate and identify the different heat sources. The governing partial differential equations are coupled and nonlinear in part due to the temperature dependence of the physicochemical properties. We show how cocurrent tab locations yield higher cell energy densities, while countercurrent tab locations yield more uniform current and temperature distributions. Sensitivity analyses underscore the flexibility of the approach. Overall, the equation system and open-source (Python) software enables an efficient and rational tool for cell design and integration.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3