Author:
Müller Johannes,Polakowski Patrick,Müller Stefan,Mikolajick Thomas
Abstract
Bound to complex perovskite systems, ferroelectric random access memory (FRAM) suffers from limited CMOS-compatibility and faces severe scaling issues in today´s and future technology nodes. Nevertheless, compared to its current-driven non-volatile memory contenders, the field-driven FRAM excels in terms of low voltage operation and power consumption and therewith has managed to claim embedded as well as stand-alone niche markets. However, in order to overcome this restricted field of application, a material innovation is needed. With the ability to engineer ferroelectricity in HfO2, a high-k dielectric well established in memory and logic devices, a new material choice for improved manufacturability and scalability of future 1T and 1T-1C ferroelectric memories has emerged. This paper reviews the recent progress in this emerging field and critically assesses its current and future potential. Moreover, a general understanding of the thin film properties and stabilization mechanism of ferroelectric HfO2 will be given. Suitable memory concepts as well as new applications will be proposed accordingly.
Publisher
The Electrochemical Society
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献