Structure of Directly Bonded Interfaces Between Si and SiC

Author:

Yoshimoto Masahiro,Araki Ryosuke,Kurumi Takamasa,Kinoshita Hiroyuki

Abstract

A Si-on-SiC wafer in which the Si wafer is directly bonded to the semi-insulating single-crystal 6H-SiC without an intermediate layer was developed. A remarkable improvement in the heat-dissipation performance due to the high thermal conductivity of SiC was demonstrated for Si metal oxide semiconductor field-effect transistors fabricated on the bonded wafers. In transmission electron microscopy (TEM), linear defects similar to misfit dislocations with a density of 2-6 × 107 lines/cm−2 were observed in plan-view TEM images of the Si/SiC interfaces. Comparison between Si(001)/6H-SiC(0001) and Si(111)/6H-SiC(0001) interfaces implies that the linear defects were formed on the Si side of the Si/SiC interface. Disordered Si layers with thicknesses of several atomic layers were observed in the cross-sectional TEM images, and the thickness is minimized at an annealing temperature of 1000{degree sign}C. The trap density at the interface was determined by admittance spectroscopy to be ~1 × 1011 cm−2eV−1 at most.

Publisher

The Electrochemical Society

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3