A Study of SOFC Cathode Degradation in H2O Environments

Author:

Pellegrinelli Christopher,Huang Yi-Lin,Taillon Joshua A.,Salamanca-Riba Lourdes G.,Wachsman Eric D.

Abstract

An understanding of degradation mechanisms of SOFC cathodes under operating conditions is essential for the development of commercial, intermediate temperature (<700°C) SOFCs. Literature shows that the presence of H2O in the cathode impacts the performance of SOFCs. In this study, we attempt to determine the degradation mechanisms of the composite cathode, (La0.8Sr0.2)0.95MnO3±δ - (Y2O3)0.8(ZrO2)0.92 (LSM-YSZ) in an H2O environment based on a multi-faceted approach. LSM-YSZ/YSZ/LSM-YSZ symmetric cells were examined in the presence of the contaminant (H2O) under different cycling, polarization and working conditions. Symmetric cell performance was measured by in-situ electrochemical impedance spectrometry (EIS), and directly compared to quantitative microstructural parameters obtained from FIB-SEM 3D reconstructions. FIB-SEM is a powerful technique to quantify important performance characteristics such as triple phase boundary (TPB) length and surface to volume ratio. EIS and FIB-SEM results were compared to kinetic rate data, extracted from isotope exchange experiments, to determine mechanistic relationships.

Publisher

The Electrochemical Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3