Author:
Gasteiger Hubert A.,Marković Nenad,Ross Philip N.,Cairns Elton J.
Abstract
The kinetics of methanol electro‐oxidation on well‐characterized Pt‐Ru alloy surfaces were measured in sulfuric acid solution as a function of temperature. The alloy surfaces were prepared in ultrahigh vacuum with the surface composition determined by low energy ion scattering. It was found that the activity of Ru towards the dissociative adsorption of methanol is a strong function of temperature. This change in the adsorptive nature of the Ru sites with temperature produced a variation in the optimum surface composition with temperature. The optimum surface had an Ru content which increased with increasing temperature, from close to ≈10 atomic percent (a/o) Ru at 25°C to a value in the vicinity of ≈30 a/o at 60°C. The shift in optimum composition with temperature was attributed to a shift in the rate‐determining step from methanol adsorption/dehydrogenation at low temperature to the surface reaction between the dehydrogenated intermediate and surface oxygen at high temperature. The apparent activation energies were consistent with this change in the rate‐determining step.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
577 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献