Enhancing Sr-deficient Sr(Ti0.3Fe0.7)O3–δ Cathode Performance through Sm0.5Sr0.5CoO3–δ Infiltration

Author:

Kim Dong-Yeon,Park Chan-Hyun,Park Beom-KyeongORCID

Abstract

The development of cathodes with improved polarization, aimed at reducing the operating temperature of solid oxide fuel cells (SOFCs), is an important avenue of research toward more efficient SOFCs. Sr(Ti0.3Fe0.7)O3–δ recently emerged as an active and stable cathode material; although its oxygen transport capability was shown to be further improved by introducing a Sr deficiency, the accompanying increased sinterability creates challenges in optimizing cathode microstructure. One facile approach may be single-step infiltration with highly active materials, such as Sr0.5Sm0.5CoO3–δ (SSC). However, there is limited knowledge regarding the impact of SSC on the electrochemical mechanisms within Sr-deficient Sr(Ti0.3Fe0.7)O3–δ . In this study, we systematically investigate the electrochemical characteristics of SSC-infiltrated Sr0.95(Ti0.3Fe0.7)O3–δ (STF) cathodes. Transmission line model-based impedance analysis provides a mechanistic understanding of STF and the role of SSC infiltrants in polarization improvement. The results reveal that SSC effectively reduces the resistance associated with key electrode processes, including oxygen diffusion, surface exchange, and dissociative adsorption/desorption. Consequently, using SSC infiltration, the power density of a Ni–Zr0.84Y0.16O2–δ (YSZ) anode-supported full cell with thin (∼2.5 μm) electrolyte increased from ∼1.88 to ∼2.47 W cm–2 at 800 °C.

Funder

Pusan National University

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3