Abstract
Electrochemical migration (ECM) is one of the serious failure modes encountered in electronic devices due to the electrochemical reactions triggered by the presence of moisture and bias voltage, leading to the growth of dendrites and short circuits. The classical ECM mechanism consists of four consecutive stages: (i) electrolyte formation, (ii) anodic dissolution, (iii) ion transport, and (iv) dendrite growth. ECM is a delicate process that involves a combination of a good number of factors, such as the electrode properties, climatic conditions, contaminants, electric field, additives, etc. We intend to provide a comprehensive review of the complex effects that these factors have on each stage of ECM and provide insights into the recent developments in ECM research. Previous findings, current debates and recent discoveries are covered in this article. This review paper also provides a review of recent strategies for ameliorating ECM failures in electronics.
Funder
Partnership Grant of Universiti Malaya
Collaborative Research in Engineering, Science and Technology Centre
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献