Abstract
Electric power can be generated from renewable energy sources such as solar and wind, making electrocatalytic hydrogenation an important technology to reduce carbon dioxide emissions in the organic synthesis industry. In the present work, the electrocatalytic semihydrogenation of diphenylacetylene was carried out in a proton exchange membrane (PEM) reactor with carbon-supported Pt, Pd, and Pt–Pd alloy cathode catalysts. Diphenylacetylene introduced into the PEM reactor at less negative potentials underwent electrocatalytic hydrogenation to provide cis-stilbene as a main stereoisomer, with excellent current efficiencies. Among the investigated catalysts, the Pt–Pd alloy with a composition of 1(Pt):99(Pd) was found to be the most suitable for achieving both high cis-stilbene selectivity and a high production rate (partial current density) for cis-stilbene.
Funder
Japan Society for the Promotion of Science
Core Research for Evolutional Science and Technology
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献