Low-Cost Flexible Graphene Oxide Humidity Sensor Fabricated Using Inkjet Printing and Aerosol Deposition

Author:

Afsana ORCID,Bansal SoniaORCID

Abstract

Flexible humidity sensors play a critical role in medical diagnostics and industrial control systems. In this study, a low-cost flexible humidity sensor is presented. The humidity sensor is developed by printing silver interdigitated electrodes (IDE) on a polyethylene terephthalate (PET) substrate using an Epson Stylus C88+ inkjet printer. The sensing layer of the humidity sensor was fabricated using graphene oxide (GO) ink, which is deposited onto the electrodes using an aerosol deposition technique. The GO humidity sensor achieves excellent sensing performance over a wide range of humidity levels from 11% to 97% RH range, with a fast response time of 2 s and recovery time of 17 s. The sensor also exhibits ultra-high sensitivity (243 kΩ/%RH), low hysteresis (2.16%), excellent repeatability, long-term stability, and high flexibility (tested at bending radiuses of 4 cm, 3.5 cm, 3 cm, and 2.5 cm). The humidity sensing mechanism of the proposed GO humidity sensor was also discussed. Furthermore, the sensor exhibited excellent capabilities in monitoring human respiration, distinguishing between nose and mouth breathing, detecting finger movements without physical contact, and even recognising basic spoken words. These features of the sensor possess significant potential for various applications in human healthcare.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3