Deformation from Formation Until End of Life: Micro X-ray Computed Tomography of Silicon Alloy Containing 18650 Li-Ion Cells

Author:

Pfrang AndreasORCID,Kersys Algirdas,Kriston AkosORCID,Scurtu Rares-GeorgeORCID,Marinaro MarioORCID,Wohlfahrt-Mehrens Margret

Abstract

The use of Si-containing negative electrodes is one of the most promising options to increase the energy density of Li-ion batteries. Nonetheless, increasing the Si content in the anode above 5–10 weight % is still a challenge because of the expansion/contraction behavior of the Si upon lithiation/de-lithiation. Due to a 2 to 3 fold volume increase of Si during charging, it is paramount to understand and manage structural changes from the formation until the end of life. This applies not only at electrode, but also at cell level and specifically for cells with high electrode loadings close to mass production format. To this aim, we report here on the structural changes in Si-blended anode/manganese nickel cobalt oxide (NMC) 622 cathode 18650 format cells from production through formation until end of life by means of micro X-ray computed tomography (CT). We constructed specially designed 18650 cells in which the jelly roll does not fill the full volume of the case. The volume change without external constraint led to the identification of three main deformation mechanisms at the jelly roll level and shed some light on the effect of the cell geometry on the use and performance of anodes with high Si-content.

Funder

Horizon 2020 Framework Programme

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3