Investigation of the Redox Potential of Lithium and Its Dissolution in the LiCl–KCl Eutectic

Author:

Zhao Jia,Wang Yuyang,Lu GuiminORCID

Abstract

This present paper reports two fundamental thermodynamic data, including redox potential of Li+ and dissolution rate of metallic lithium in the LiCl–KCl eutectic for promoting the development of metallic lithium. Firstly, data from the first-principles molecular dynamics (FPMD) simulation was used for deep potential (DP) model training. The model’s reliability was then evaluated by the consistency of the energy, force, and radial distribution functions by comparing with FPMD simulation. After that, machine learning-driven molecular dynamics was performed by deep potential molecular dynamics (DPMD) to predict the redox potential of Li+/Li vs Cl2/Cl in the LiCl–KCl eutectic. Compared with electromotive force measurements results, the maximum relative error is 6.86%. Finally, we investigated the effects of current density and temperature on lithium metal dissolution rate in the LiCl–KCl eutectic by the strategy of current reversal chronopotentiometry, respectively. In the current density range (0.041–0.245 A cm−2), the effect of current density on the dissolution rate of metallic lithium is negligible. As expected, lithium metal prefers to dissolve at high temperatures, and the activation energy of dissolution of lithium in LiCl–KCl eutectic is Ea = 27.78 kJ·mol−1.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3