Abstract
The impact of graphite materials on capacity retention in Li-ion cells is important to understand since Li inventory loss due to SEI formation, and cross-talk reactions between the positive and negative electrodes, are important cell failure mechanisms in Li-ion cells. Here, we investigate the impact of five graphite materials from reputable suppliers on the performance of NMC811/graphite cells. We show that natural graphites (NG) here have a mixture of 3R and 2H phases, while artificial graphites (AG) were 2H only. We find that there are differences between the N2 BET surface area and the electrochemically-accessible area where redox reactions can take place and it is the latter that is most important when optimizing graphite-containing cells. Part I of this 2-part series investigates physical and electrochemical differences between the graphite materials of interest here, as well as room temperature cycling to probe improvements in capacity retention. We demonstrate that advanced AG materials with small accessible surface areas can improve safety, 1st cycle efficiency (FCE) and long-term cycling compared to NG materials with higher accessible surface areas. Part II of this work examines elevated temperature cycling, cell swelling, and makes lifetime predictions for the best NMC811/graphite cells.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献