Abstract
Effective diagnostic techniques for Li-ion batteries are vital to ensure that they operate in the required voltage and temperature window to prevent premature degradation and failure. Ultrasonic analysis has been gaining significant attention as a low cost, fast, non-destructive, operando technique for assessing the state-of-charge and state-of-health of Li-ion batteries. Thus far, the majority of studies have focused on a single C-rate at relatively low charge and discharge currents, and as such the relationship between the changing acoustic signal and C-rate is not well understood. In this work, the effect of cell temperature on the acoustic signal is studied and shown to have a strong correlation with the signal’s time-of-flight. This correlation allows for the cell temperature to be inferred using ultrasound and to compensate for these effects to accurately predict the state-of-charge regardless of the C-rate at which the cell is being cycled. Ultrasonic state-of-charge monitoring of a cell during a drive cycle illustrates the suitability of this technique to be applied in real-world situations, an important step in the implementation of this technique in battery management systems with the potential to improve pack safety, performance, and efficiency:
Funder
Royal Acadamey of Engineering
European Automobile Manufacturers’ Association
Innovate UK
Faraday Institution
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献