Charge Transport in the A6B2O17 (A = Zr, Hf; B = Nb, Ta) Superstructure Series

Author:

Miruszewski TadeuszORCID,Mielewczyk-Gryń Aleksandra,Jaworski DanielORCID,Rosenberg William Foute,McCormack Scott J.,Gazda Maria

Abstract

The electrical properties of the entropy stabilized oxides: Zr6Nb2O17, Zr6Ta2O17, Hf6Nb2O17 and Hf6Ta2O17 were characterized. The results and the electrical properties of the products (i.e. ZrO2, HfO2, Nb2O5 and Ta2O5) led us to hypothesize the A6B2O17 family is a series of mixed ionic-electronic conductors. Conductivity measurements in varying oxygen partial pressure were performed on A6Nb2O17 and A6Ta2O17. The results indicate that electrons are involved in conduction in A6Nb2O17 while holes play a role in conduction of A6Ta2O17. Between 900 °C–950 °C, the charge transport in the A6B2O17 system increases in Ar atmosphere. A combination of DTA/DSC and in situ high temperature X-ray diffraction was performed to identify a potential mechanism for this increase. In-situ high temperature X-ray diffraction in Ar does not show any phase transformation. Based on this, it is hypothesized that a change in the oxygen sub-lattice is the cause for the shift in high temperature conduction above 900 °C–950 °C. This could be: (i) Nb(Ta)4+- oxygen vacancy associate formation/dissociation, (ii) formation of oxygen/oxygen vacancy complexes (iii) ordering/disordering of oxygen vacancies and/or (iv) oxygen-based superstructure commensurate or incommensurate transitions. In-situ high temperature neutron diffraction up to 1050 °C is required to help elucidate the origins of this large increase in conductivity.

Funder

National Science Foundation (NSF) in the Directorate for Mathematical and Physical Sciences (MPS), under the Division of Materials Research (DMR), in the Ceramic (CER) program

Narodowe Centrum Nauki

Publisher

The Electrochemical Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3