Abstract
Room temperature sodium-sulfur (RT Na-S) batteries are considered potential candidates for stationary power storage applications due to their low cost, broad active material availability and low toxicity. Challenges, such as high volume expansion of the S-cathode upon discharge, low electronic conductivity of S as active material and herewith limited rate capability as well as the shuttling of polysulfides (PSs) as intermediates often impede the cycle stability and practical application of Na-S batteries. Sulfurized poly(acrylonitrile) (SPAN) inherently inhibits the shuttling of PSs and shows compatibility with carbonate-based electrolytes, however, its exact redox mechanism remained unclear to date. Herein, we implement a commercially available and simple electrolyte into the Na-SPAN cell chemistry and demonstrate its high rate and cycle stability. Through the application of in situ techniques utilizing electronic impedance spectroscopy (EIS) and X-ray absorption spectroscopy (XAS) at different depths of charge and discharge, an insight into SPAN’s redox chemistry is obtained.
Funder
Bundesministerium für Wissenschaft und Forschung
Bundesministerium für Wirtschaft und Energie
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献