Label-Free and Sensitive Electrochemical Detection of DNA Methylation Damage Based on DNA Glycosylase Recognition and Excision Coupled with Exonuclease III Amplification

Author:

Zhang Qing-Zheng,Su Chun-Bo,Shi San-Jun,Gao Yue,Huang Rong-FuORCID

Abstract

Because the cytotoxic DNA methylated bases are chemically inert and small in size, limited biosensing strategies especially with high sensitivity were established to detect DNA methylation damage. In this work, a label-free electrochemical assay was proposed for the sensitive detection of DNA methylation damage in dsDNA film on indium tin oxide electrode. The human alkyladenine DNA glycosylase was employed to recognize and selectively remove DNA methylated bases, generating apurinic site. Subsequently, exonuclease III not only further converted the methylation sites into strand breaks, but also progressively removed nucleotides from the 3′ to 5′ end starting from the apurinic sites. These processes could maximum amplify DNA methylation damage, also confirmed by gel electrophoresis and fluorescence measurements. The damaged DNA film bound much less electrochemical indicator, Ru(bpy)2(dppz)2+, and accompanied by an anodic current drop. As a result, DNA methylation damage produced with as low as 10 μM of methyl methanesulfonate can be detected, which was 100-fold lower than the previously reported photoelectrochemical sensing strategy. Other DNA base modification products showed much less decrease of oxidation current, demonstrating its good selectivity. This strategy can be utilized to sensitively and rapidly assess the genotoxicity of environmental pollutants.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3