Hydrogen-powered Electrochemically-driven CO2 Removal from Air Containing 400 to 5000 ppm CO2

Author:

Matz Stephanie,Shi LinORCID,Zhao YunORCID,Gottesfeld ShimshonORCID,Setzler Brian P.ORCID,Yan YushanORCID

Abstract

The performance of a hydrogen-powered, electrochemically-driven CO2 separator (EDCS) was demonstrated at cathode inlet CO2 concentrations from 400 ppm to 5,000 ppm. The impact of current density and CO2 concentration were evaluated to predict operating windows for various applications. The single-cell data was used to scale a 100 cm2, multi-cell stack using a shorted-membrane design for four applications: direct air capture (DAC), hydroxide exchange membrane fuel cell (HEMFC) air pretreatment, submarine life support, and space habitation. For DAC, a 339-cell EDCS stack (7.7 L, 17 kg) was projected to remove 1 tonne CO2 per year. The addition of the EDCS in HEMFC systems would result in nearly a 30% increase in volume, and therefore further improvements in performance would be necessary. A module containing five 338-cell EDCS stacks (38 L, 85 kg) in parallel can support a 150 person crew at 2.1% of the volume of the liquid amine system employed in submarines. For space habitation, a 109-cell EDCS stack (3.2 L, 10 kg) is adequate for 6 crewmembers, and is less than 1% the size and 5% the weight of the current CO2 removal system installed on the International Space Station.

Funder

Advanced Research Projects Agency - Energy

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrochemical Gas Separations for Green Energy Integration;The Electrochemical Society Interface;2024-03-01

2. Reviewing direct air capture startups and emerging technologies;Cell Reports Physical Science;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3