Electrolyte Takeover Strategy for Performance Recovery in Polysulfide-Permanganate Flow Batteries

Author:

Saraidaridis JamesORCID,Yang Zhiwei

Abstract

The abundance of active material precursors for a polysulfide-permanganate flow battery makes it a compelling chemistry for large-scale, and potentially long-duration (>10 h), grid electricity storage. Precipitation, arising from either reactant crossover or electrolyte side reactions, decrease cell efficiencies during charge/discharge cycling. Regardless of the abundance and low cost of active materials, a system without high cyclability cannot meet grid electricity storage economic targets for applications that cycle regularly. Precipitated species can be removed, and reactor efficiency performance restored, by using an electrolyte takeover process, or ETP. Two ETP methods are investigated. One ETP uses the negative electrolyte, an alkaline polysulfide (pS) solution, as takeover solution, and another uses dilute acidic peroxide (DAP) as the takeover solution. Both ETPs maintain functional cell operation within an acceptable performance range over >1000 h and >200 cycles, a duration over which cells that do not undergo ETPs clog and fail. The DAP ETP proves especially effective and limits irrecoverable voltage efficiency fade below 0.02%/cycle. These ETPs, either individually, or in combination, can enable the requisite cyclability for practical polysulfide-permanganate flow battery systems.

Funder

Advanced Research Projects Agency - Energy

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3