Competitive Adsorption and Interplay between Methanol and Water During Electro-Oxidation on Pd-Based Electrocatalyst

Author:

Maya-Cornejo J.,Ledesma-Durán A.,Hernández S. I.,Santamaría-Holek I.ORCID

Abstract

The methanol oxidation reaction on palladium-based materials at different concentrations is studied theoretically and experimentally through its electrochemical response. Using a well-established reaction mechanism for the methanol oxidation reaction under alkaline conditions, we analyze the role of methanol, water adsorption and oxidation steps on the total electrochemical current obtained from linear voltammetry experiments. Solving the kinetic equations numerically, we fit the data obtained from experiments performed with a commercial catalyst at different methanol concentrations. Comparison of the numerical calculations with analytical expressions deduced following Laviron’s theoretical approach leads to discerning the adsorption contributions from methanol and water to the overall shape of the oxidation current from the nonlinear contribution associated with carbon-dioxide production. This identification allows, in turn, to use the peak current of the adsorption-related processes as a tool to characterize the overall catalyst’s performance.

Funder

UMDI-J

UNAM DGAPA

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3