Graphite-Si@TiO2 Core-Shell Nanoparticles as Composite Anode for Li-ion Batteries: Electrochemical Response

Author:

Vats Bhavya NidhiORCID,Gupta RaghvendraORCID,Gupta AmitORCID,Fatima S.,Kumar Deepak

Abstract

This study focuses on optimizing composite anode through varying Si@TiO2 core–shell nanoparticles (core is silicon and shell is titania) percentages in graphite. Material characterization reveals the morphological transformation of graphite and silicon nanoparticles into composite anodes. Electrochemical tests, including cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy, provide essential insights into the electrochemical behavior of these composites. In the cycling tests, graphite with 5% core–shell (GrCS5), graphite with 10% core–shell (GrCS10), and graphite with 15% core–shell (GrCS15) show initial discharge capacities of 568 mAh g−1, 675 mAh g−1, and 716 mAh g−1, retaining 76%, 75%, and 72% after 100 cycles, respectively. Conversely, the graphite with 10% bare silicon (GrSi10) composite, commencing with 728 mAh g−1, exhibits rapid degradation, retaining 54% after 100 cycles. Moreover, the EIS analysis reveals higher values of ohmic, SEI, and charge transfer resistances in GrSi10 compared to other composite anodes after 100 cycles. The examination of the lithium diffusion coefficient indicates that GrCS5 demonstrates superior lithium diffusion kinetics, displaying the highest coefficient among all composite anodes. The research objective is to identify the optimal composite anode composition through quadrant analysis, considering specific capacity and lithium diffusivity after 100 cycles. In conclusion, integrating Si@TiO2 core–shell nanoparticles in graphite anodes improves their performance, with GrCS10 demonstrating notable effectiveness.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3