Core-Shell Enhanced Single Particle Model for lithium iron phosphate Batteries: Model Formulation and Analysis of Numerical Solutions

Author:

Pozzato GabrieleORCID,Takahashi AkiORCID,Li Xueyan,Lee Donghoon,Ko Johan,Onori SimonaORCID

Abstract

In this paper, a core–shell enhanced single particle model for lithium iron phosphate ( L i F e P O 4 ) battery cells is formulated, implemented, and verified. Starting from the description of the positive and negative electrodes charge and mass transport dynamics, the positive electrode intercalation and deintercalation phenomena and associated phase transitions are described with the core–shell modeling paradigm. Assuming two phases are formed in the positive electrode, one rich and one poor in lithium, a core-shrinking problem is formulated and the phase transition is modeled through a shell phase that covers the core one. A careful discretization of the coupled partial differential equations is proposed and used to convert the model into a system of ordinary differential equations. To ensure robust and accurate numerical solutions of the governing equations, a sensitivity analysis of numerical solutions is performed and the best setting, in terms of solver tolerances, solid phase concentration discretization points, and input current sampling time, is determined in a newly developed probabilistic framework. Finally, unknown model parameters are identified at different C-rate scenarios and the model is verified against experimental data.

Funder

LG Energy Solution

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3