Facile Material Design Concept for Co-Free Lithium Excess Nickel-Manganese Oxide as High-Capacity Positive Electrode Material

Author:

Tabuchi MitsuharuORCID,Kitta Mitsunori,Yazawa Koji,Kubota KeiORCID

Abstract

High-capacity Li1+x(Ni0.3Mn0.7)1-xO2, (0 < x < 1/3) samples were synthesized by the coprecipitation–calcination method. Both electrochemical cycle and high-rate performances were drastically improved by selecting an N2 atmosphere as final calcination. Scanning transmission electron microscopy—energy dispersive X-ray spectroscopy analysis showed that the sample calcined in an N2 atmosphere had a more homogeneous transition metal distribution into primary particles than that calcined in air. The solid-state 7Li nuclear magnetic resonance data showed that electrochemically inactive domains were only diminished for the sample calcined in an N2 atmosphere after electrochemical activation. X-ray Rietveld analysis revealed that the suitable transition metal distribution and content of the samples were different from those of typical layered rock-salt materials. Only that calcined in an N2 atmosphere had no spinel formation during charging and no oxide ion insertion reaction during discharging. No positive Co substitution effect was observed under the optimized preparation conditions. At the 100th cycle, the discharge capacity was 216 mAh g−1, which corresponds to 87% of the initial capacity (251 mAh g−1) at optimizing synthetic condition.

Funder

New Energy and Industrial Technology Development Organization

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3