Reduction of ZrO2 during SNF Pyrochemical Reprocessing

Author:

Nikolaev Andrey,Suzdaltsev AndreyORCID,Pavlenko Olga,Zaikov Yuriy,Tatyana Kurennykh ,Vykhodets Vladimir

Abstract

Reduction of ZrO2 by lithium during electrolysis of LiCl-KCl-Li2O melt at 650 °C was studied using a set of physicochemical methods of analysis. Influence of ZrO2 in the space near a molybdenum cathode on the kinetics of the cathode process was established. Possible variations of the electrode reaction associated with the zirconium reduction were proposed. The appearance of ZrO2 in the cathode space resulted in consumption of reduced lithium and in increase in the potential relaxation time of the molybdenum cathode after cathode polarization. Long-term galvanic impulse electrolysis of LiCl-KCl-Li2O melt at 650 °C was carried out using the molybdenum cathode which was immersed into the ZrO2 powder. According to the X-ray fluorescence analysis as well as the method of nuclear reactions the reduction product was presented by the ZrO2, Li2ZrO3, Zr3O phases. Additionally, by alloying the reduction product with tin, the ZrO2 reduction degree to metallic zirconium was estimated, which was close to zero. It was assumed that the main pathway for the appearance of the metallic zirconium in the ZrO2 reduction product during electrolysis of the LiCl-KCl-Li2O melt was direct electroreduction of dissolved zirconium in the melt.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3