Abstract
In this work, we propose a finite element framework to analyze the diffusion-induced mechanical degradation in graphite active particles (APs) due to bulky anion intercalation in dual-graphite batteries (DGBs). Finite strain formulation is considered to account for the large volume expansion that typically occurs in graphite cathodes. The proposed model considers chemo-mechanical coupling, including the effect of the particle volume changes due to the penetration of ions and its eventual fracture, modeled using a phase-field fracture approach. To account for the stochastic nature of graphitic microstructures, the mechanical properties are described by means of a Weibull distribution function. Our model is able to reproduce realistic cracking patterns that take place during the charging and discharging processes in APs. Finally, we use the model to simulate different galvanostatic charging rates and particle sizes to provide insight into the mechanical degradation of graphite APs during
PF
6
−
intercalation. We use this information to provide design rules for improved graphite cathodes or better operation strategies in DGBs.
Funder
Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献