Abstract
The properties of the oxide films formed on solution-annealed and cold-worked 316L stainless steel (SS) specimens with and without charged hydrogen in deaerated pressurized water reactor primary water at 300 °C were investigated. The outer oxide layers of all specimens were composed of magnetite (Fe3O4) and NiFe2O4. Charged hydrogen resulted in larger outer iron-bearing oxide particles forming due to hydrogen-enhanced outward diffusion of iron cations. Prior cold-work accelerates the oxidation was observed. Charged hydrogen led to local cracks in the oxide film and enhanced the penetration oxidation beneath the metal/oxide interface. The Cr-rich inner oxide layer grown on the prior cold-worked specimen with charged hydrogen was thicker than that on the cold-work specimen or the hydrogen-charged specimen, revealing the combined effects of charged hydrogen and prior cold-work on the acceleration of the oxidation process. The working mechanism of the solid-state hydrogen effect on the oxide film was discussed.
Funder
National Key R&D Program of China
National Science and Technology Major Project
Natural Science Foundation of China
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献