Review—Advances in Rechargeable Li-S Full Cells

Author:

Tang Shuai,Li Xiang,Fan Qianqian,Zhang Xiuqing,Wang Dan-Yang,Guo Wei,Fu YongzhuORCID

Abstract

Lithium sulfur (Li-S) batteries with the high theoretical specific energy of 2600 Wh kg−1 are a promising candidate at the era of the post lithium-ion batteries. In most studies, lithium metal anode is used. To advance the Li-S battery towards practical application, Li-S full cells with low or non-Li metal anode need to be developed. Herein, the latest advances of the Li-S full cells are mainly categorized according to the initial state of the S cathode, i.e., sulfur (S) and lithium sulfide (Li2S). In each part, the challenges and strategies are thoroughly reviewed for the cells with different anodes, such as carbon, silicon, other alloys and metallic Li. The cycling performance comparisons of state-of-the-art Li-S full cells are also included. To achieve the high real energy density for practical applications, the Li-S full cells have to use low excess lithiated graphite, lithiated alloys, or metallic Li as the anodes. Meanwhile, the lean electrolyte is also important to further improve the practical energy density. The review is expected to supply a comprehensive guide to design Li-S full cells.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3