The Influence of Cycling, Temperature, and Electrode Gapping on the Safety of Prismatic Lithium-Ion Batteries

Author:

Cai ZhuhuaORCID,Mendoza Sergio,Goodman Johanna,McGann John,Han Binghong,Sanchez Hernan,Spray Ryan

Abstract

Lithium-ion batteries are prevalent in every aspect of modern life (cell phones, laptops, electric vehicles, and energy storage systems for the electric grid). For all applications, the battery safety is an important consideration. Compared to numerous studies on the safety behavior of 18650-type cells, limited research has been conducted to characterize prismatic cells with their unique challenges including how electrode gapping, cycling history, electrolyte degradation, or lithium plating affect the safety. In this paper, a systematic study is reported on prismatic cells cycled at 0 °C, 23 °C, and 45 °C. The safety aspect of the cells with electrode gapping is evaluated using accelerating rate calorimetry (ARC). The evolution of gaps was monitored using X-ray computed tomography. Our study demonstrates that gaps are intrinsic even in fresh cells. The gaps can evolve during cycling and are closely related to the localized lithium plating and electrolyte degradation, which can be more severe for cells cycled at 45 °C. However, the safety behavior is not simply correlated to cell internal structure (e.g. gapping), or the amount of degradation products after cycling; the aging mechanism at different temperatures also plays an important role. Understanding the thermal stability of prismatic cells during their lifecycle is necessary for risk mitigation in numerous applications.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3