Editors’ Choice—Review—Impedance Response of Porous Electrodes: Theoretical Framework, Physical Models and Applications

Author:

Huang JunORCID,Gao Yu,Luo Jin,Wang Shangshang,Li ChenkunORCID,Chen Shengli,Zhang Jianbo

Abstract

Porous electrodes are prevalent in electrochemical devices. Electrochemical impedance spectroscopy (EIS) is widely used as a noninvasive, in situ characterization tool to investigate multi-phase (electronic, ionic, gaseous) transport and coupling interfacial reactions in porous electrodes. Interpretation of EIS data needs model and fitting which largely determine the type and amount of information that could possibly be obtained, and thereby the efficacy of the EIS method. This review focuses on physics-based models, as such models, compared to electrical circuit models, are more fundamental in our understanding of the porous electrodes, hence more reliable and more informative. Readers can have a glimpse of the long history of porous electrode theory and in particular its impedance variants, acquaint themselves with the celebrated de Levie model and a general theoretical framework, retrace the journey of extending the de Levie model in three directions, namely, incorporating new physico-chemical processes, treating new structural effects, and considering high orders. Afterwards, a wealth of impedance models developed for lithium-ion batteries and polymer electrolyte fuel cells are introduced. Prospects on remaining and emerging issues on impedance modelling of porous electrodes are presented. When introducing theoretical models, we adopt a “hands-on” approach by providing substantial mathematical details and even computation codes in some cases. Such an approach not only enables readers to understand the assumptions and applicability of the models, but also acquaint them with mathematical techniques involved in impedance modelling, which are instructive for developing their own models.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3