Review—Metal Oxides: Application in Exhaled Breath Acetone Chemiresistive Sensors

Author:

Masikini Milua,Chowdhury Mahabubur,Nemraoui Ouassini

Abstract

Human breath investigation offers a non-invasive and quick strategy for recognizing different volatile organic compounds (VOCs) that are markers for various diseases. Scientists have shown that breath acetone is a successful biomarker of Type 2 diabetes which is the most common type of diabetes. The generation of acetone is a consequence of the body processing fats as an alternative of glucose to produce energy. Thus, detection of breath acetone can be a rapid, viable, and patient compliant alternative to the conventional methods of blood glucose determination. To achieve this goal, metal oxide nanostructures with various shapes through different synthesis routes in the nanometer scale, can be used. Owing to its properties such as high surface-to-volume ratios and subsequently large number of surface sites exposed to acetone gas, metal oxide nanostructures facilitate a well-built gas-sensing layer interaction and consequently compared to conventional materials, present a higher sensitivity. This work, presents the progress in metal oxides nanostructures (semiconductor nanomaterials) as gas sensing materials for the exhaled acetone detection, which offers the possibility to help people living with diabetes to screen their disease. The different types of metal oxides materials used in Breath acetone sensors, their limitations and future perspectives have been highlighted.

Funder

National Research Foundation of South Africa,

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3